## Sec 6.2, 6.6 Two Dimensional Constant Linear Systems (Phase Plane)

In this section we will only consider linear systems of the form  $\vec{Y}' = A\vec{Y}$ , where A is an invertible  $2 \times 2$ . These systems can be written as

$$\left[\begin{array}{c} x'\\y'\end{array}\right] = \left[\begin{array}{c} a & b\\c & d\end{array}\right] \left[\begin{array}{c} x\\y\end{array}\right]$$

$$\vec{y}'(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
$$\vec{y}'(t) = \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$$

where  $det(A) \neq 0$ .

## How to sketch the solutions of this system?

**Ex1.** Consider the following first order linear system:  $\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} -1 & 2\\ 0 & -3 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$ The general solution is given by

$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \mathbf{c}_1 \mathbf{e}^{-1t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \mathbf{c}_2 \mathbf{e}^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Notice that the eigenvalues are real and negative.

Step1: Sketch the four "easy" solutions; i.e. the solutions that correspond to the pairs:

| $\mathbf{c}_1$ | $\mathbf{c}_2$ |
|----------------|----------------|
| 1              | 0              |
| -1             | 0              |
| 0              | 1              |
| 0              | -1             |

For example, if  $c_1 = 1$  and  $c_2 = 0$ , then we can identify the corresponding solution with the pair

$$(x(t), y(t)) = \mathbf{e}^{-t}(1, 0)$$

This is the parametric curve  $x(t) = e^{-t}$ , y(t) = 0. The **trace** of this parametric curve is the positive x-axis.

For example, if  $c_1 = 0$  and  $c_2 = 1$ , then we can identify the corresponding solution with the pair

$$(x(t), y(t)) = \mathbf{e}^{-3t}(1, -1).$$

This is the parametric curve  $x(t) = e^{-3t}$ ,  $y(t) = -e^{-3t}$ . The **trace** of this parametric curve is the open ray y = -x whose end point at the origin and contains the point (1, -1).

## Step2: Fill in the rest. How?

We need to understand the behavior of the solutions. Since **both eigenvalues are negative**, regardless the values of  $\mathbf{c}_1$  and  $\mathbf{c}_2$  any solution converges to the origin point (0,0). But we can say more about the behavior of the solutions.

- As  $t \to \infty$ , the dominant term is  $c_1 \mathbf{e}^{-1t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ . In other words, for large t, any solution is approximately parallel to  $\mathbf{e}^{-1t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ .
- As  $t \to -\infty$ , the dominant term is  $c_2 \mathbf{e}^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ . In other words, for large t (negative), any solution is approximately parallel to  $\mathbf{e}^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ .

|                                                | x'=-x+2*y The direction field solver knows<br>y'=-3*y evaluation must be entered expli |              |              |            |              |              |              |              |              |   |    |   |   |   |   |   |   |   |   |   |
|------------------------------------------------|----------------------------------------------------------------------------------------|--------------|--------------|------------|--------------|--------------|--------------|--------------|--------------|---|----|---|---|---|---|---|---|---|---|---|
|                                                | The Display:<br>Minimum x: -5 Minimum y: -5 Arrow length: 15 Uariable leng             |              |              |            |              |              |              |              |              |   |    |   |   |   |   |   |   |   |   |   |
|                                                |                                                                                        |              |              |            |              |              |              |              |              |   |    |   |   |   |   |   |   |   |   |   |
| Maximum x: 5 Maximum y: 5 Number of arrows: 20 |                                                                                        |              |              |            |              |              |              |              |              |   |    |   |   |   |   |   |   |   |   |   |
| Graph Phase Plane                              |                                                                                        |              |              |            |              |              |              |              |              |   |    |   |   |   |   |   |   |   |   |   |
|                                                | 7                                                                                      | 7            | 7            | 7          | 7            | 7            | 7            | ¥            | ¥            | 7 | 7  | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| 4.5                                            | 1                                                                                      | $\mathbf{Y}$ | 7            | 7          | 7            | 7            | 7            | 7            | 7            | 7 | 7  | 7 | 7 | 7 | 7 | 7 | 1 | 1 | 1 | 1 |
| 4                                              | 7                                                                                      | 7            | $\mathbf{Y}$ | 7          | $\mathbf{Y}$ | $\mathbf{Y}$ | $\mathbf{Y}$ | $\mathbf{Y}$ | 7            | 7 | 7  | 7 | 7 | 7 | 7 | 7 | 1 | Ť | Ť | 1 |
| 3.5<br>3                                       | $\searrow$                                                                             | $\searrow$   | $\mathbf{Y}$ | $\searrow$ | $\mathbf{Y}$ | $\mathbf{Y}$ | $\mathbf{M}$ | $\mathbf{Y}$ | $\mathbf{Y}$ | 7 | 7  | 7 | 7 | 7 | 1 | 1 | 1 | t | t | t |
| 2.5                                            | 7                                                                                      | $\searrow$   | $\searrow$   | $\searrow$ | $\mathbf{Y}$ | $\mathbf{Y}$ | $\mathbf{M}$ | $\mathbf{Y}$ | 7            | 7 | 7  | 7 | 7 | 7 | 1 | 1 | 1 | ţ | ţ | ţ |
| 2                                              | >                                                                                      | 7            | $\searrow$   | 7          | 7            | 7            | 7            | 7            | 7            | 7 | 7  | 7 | 7 | 1 | 1 | 1 | ţ | ţ | ţ | Ļ |
| 1.5                                            | >                                                                                      | 7            | 7            | 7          | 7            | 7            | 7            | 7            | 7            | 7 | 7  | 7 | 1 | 1 | 1 | 1 | ţ | ţ | ł | ł |
| 1                                              | 1                                                                                      | 1            | 7            | 7          | 7            | 7            | 7            | 7            | 7            | 7 | 7  | 7 | 1 | 1 | ţ | ł | ¥ | ¢ | 1 | 1 |
| 0.5                                            | 1                                                                                      | 1            | 1            | 1          | 1            | 1            | 74           | 7            | 7            | 7 | 7  | 1 | 1 | ł | ş | 1 | 4 | 4 | 2 | ~ |
| 0                                              | 1                                                                                      | 1            | 1            | Ť          | ľ            | 1            | 1            | 1            | >            | 7 | 1  | ¥ | V | 2 | Ľ | * | 4 | ۲ | 4 | * |
| -0.5                                           | ~                                                                                      | ~            | ~            | ~          | ^            | ~            | ~            | 1            | 1            | 1 | ~  | * | * | * | * | 4 | 4 | 1 | 1 | 4 |
| -1                                             | 1                                                                                      | 1            | /            | 1          | 1            | 1            | 1            | 1            | 1            | 1 | ^  | 1 | K | R | K | ĸ | ~ | 2 | * | * |
| -1.5                                           | 1                                                                                      | 1            | 1            | 1          | 1            | Î            | 1            | 1            | ٩            | 1 | 2  | ~ | 1 | * | R | ~ | ~ | ~ | K | 2 |
| -2                                             | 1                                                                                      | 1            | 1            | 1          | 1            | 1            | 1            | ٢            | ٨            | 1 | ٩. | 1 | ~ | ٢ | R | * | R | ~ | R | ~ |
|                                                | Î                                                                                      | Î            | ſ            | ſ          | ſ            | ſ            | ٢            | ٢            | ٢            | ٢ | ٢  | 1 | 1 | 1 | 1 | 2 | R | 1 | ~ | ~ |

If the eigenvalues are real and negative we say that the origin is a nodal sink (sink node), or asymptotically stable node.

Ex. 1 (page above)  

$$\vec{y}' = A \vec{y}$$
  $A = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix}$  Find Figm pairs  
 $\vec{y} = A \vec{y}$   $A = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix}$   
 $\vec{y} = A \vec{y}$   $A = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix}$   
 $\vec{y} = A \vec{y}$   $\vec{x} = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix}$   
 $\vec{y} = A \vec{y}$   $\vec{x} = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix}$   
 $\vec{y} = A \vec{y}$   $\vec{x} = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix}$   
 $\vec{y} = A \vec{y}$   $\vec{x} = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix}$ 

**Ex2.** Sketch the solutions of the system  $\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 1 & -2\\0 & 3 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$ .

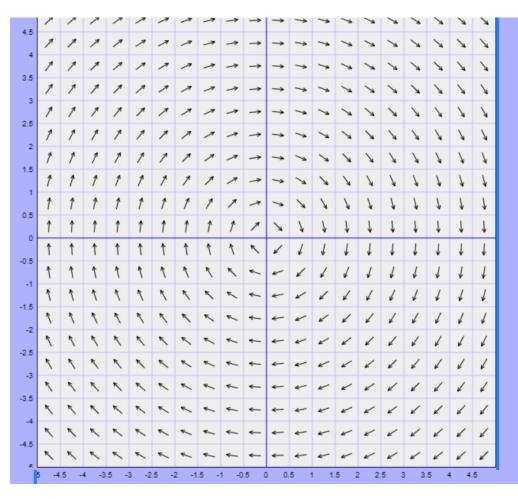
Sol: One sees that the general solution is given by

If the eigenvalues are real and positive we say that the origin is a nodal source (source node), or unstable node.

| <b>Ex.3</b> Sketch the solutions of the system $\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} -1 & 3\\ 5 & -3 \end{bmatrix}$ | $\left[ \begin{array}{c} x\\ y \end{array} \right]$ |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|

| x'=-x+3*y<br>y'=5*x-3*x                        |                                                                    |   |               |    |   |        |            |              |               |               |               | The direction field solver knows about the evaluation must be entered explicitly (2* |    |    |    |        |        |   |   |   |  |
|------------------------------------------------|--------------------------------------------------------------------|---|---------------|----|---|--------|------------|--------------|---------------|---------------|---------------|--------------------------------------------------------------------------------------|----|----|----|--------|--------|---|---|---|--|
| The Display:                                   |                                                                    |   |               |    |   |        |            |              |               |               |               |                                                                                      |    |    |    |        |        |   |   |   |  |
|                                                | Minimum x: -5 Minimum y: -5 Arrow length: 15 Variable length arrow |   |               |    |   |        |            |              |               |               |               |                                                                                      |    |    |    |        |        |   |   |   |  |
| Maximum x: 5 Maximum y: 5 Number of arrows: 20 |                                                                    |   |               |    |   |        |            |              |               |               |               |                                                                                      |    |    |    |        |        |   |   |   |  |
| Graph Phase Plane                              |                                                                    |   |               |    |   |        |            |              |               |               |               |                                                                                      |    |    |    |        |        |   |   |   |  |
|                                                |                                                                    |   |               |    |   |        |            |              |               |               |               |                                                                                      |    |    |    |        |        |   |   |   |  |
| 4.5                                            | >                                                                  | 1 | ~             | ~  | ~ | *      | 1          | ^            | <b>→</b>      | $\rightarrow$ | $\rightarrow$ | ->                                                                                   | -> | ~  | ~* | ~      | ~      | ^ | 1 | 1 |  |
| 4                                              | >                                                                  | > | 1             | 1  | * | *      | 1          | *            | $\rightarrow$ | $\rightarrow$ | →             | ->                                                                                   | -> | -* | ~  | ~      | 1      | 1 | 1 | 1 |  |
|                                                | >                                                                  | 1 | >             | ~  | ~ | ->     | ~          | 1            | ->            | $\rightarrow$ | ->            | $\rightarrow$                                                                        | -> | _* | ~  | 7      | 1      | 1 | 1 | 1 |  |
| 3.5                                            | 1                                                                  | 1 | >             | >  | > | -      | ~          | 1            | +             | $\rightarrow$ | ->            | $\rightarrow$                                                                        | -> | ,7 | ~  | 1      | 1      | 1 | 1 | 1 |  |
| 3                                              | 1                                                                  | ~ | ~             | ~  | ~ | ~      | ~          | *            | +             | $\rightarrow$ | →             | ->                                                                                   | 1  | 7  | 1  | 1      | 1      | 1 | 1 | 1 |  |
| 2.5                                            |                                                                    | ~ | ~             | ~  | ~ | ~      | ~          | ~            |               | _             |               | 2                                                                                    | 2  | 1  | 7  | ,<br>1 | 1      | 1 | 1 | 1 |  |
| 2                                              | *                                                                  | * | *             | *  | * |        |            | •            | ~             | ~             |               |                                                                                      | -  | -  | -  | -      | -      | / | • | / |  |
| 1.5                                            | 7                                                                  | 7 | 74            | 74 | 7 | 7      | 7          | 1            | *             | ->            |               | ->                                                                                   | /  | /  | /  | 1      | 1      | 1 | 1 | Ť |  |
| 1                                              | 7                                                                  | 7 | 7             | 7  | 7 | 7      | 1          | 1            | *             | ->            | ->            | ~                                                                                    | 1  | 1  | 1  | 1      | 1      | Î | 1 | ſ |  |
| 0.5                                            | 7                                                                  | 7 | $\mathcal{A}$ | 7  | 7 | 7      | $\searrow$ | >            | >             | *             | ->            | 1                                                                                    | 1  | 1  | 1  | î      | 1      | 1 | 1 | 1 |  |
|                                                | 7                                                                  | 7 | 7             | 7  | 7 | 7      | 7          | $\mathbf{Y}$ | 7             | >             | 1             | 1                                                                                    | 1  | 1  | 1  | 1      | ٢      | 1 | ٢ | ٢ |  |
| 0                                              | 7                                                                  | 7 | 7             | 1  | 1 | 1      | 1          | t            | Ļ             | 1             | ~             | ٢                                                                                    | ~  | ٢  | ٢  | ~      | ٢      | 1 | ٢ | ٢ |  |
| -0.5                                           | 1                                                                  | 1 | t             | ţ  | 1 | Ţ      | ţ          | 1            | 1             | 4             | *             | ~                                                                                    | R  | R  | ~  | 2      | R      | 2 | 2 | 2 |  |
| -1                                             | 1                                                                  | 1 | Ļ             | ţ  | ţ | v<br>J | v<br>4     | *<br>*       | ~             | -             | ←             | *                                                                                    | R  | *  | R  | *      | ,<br>R | ~ | ~ | ~ |  |
| -1.5                                           | *                                                                  | ¥ | *             | *  |   | *      | *          | *            | -             |               |               | -                                                                                    | -  | -  | -  |        |        |   |   |   |  |
| -2                                             | ł                                                                  | ł | ¥             | ¥  | 1 | 4      | 4          | ~            | ~             | 4             | 4             | ~                                                                                    | ~  | ~  | ~  | ~      | ~      | ~ | 1 | ~ |  |
|                                                | 1                                                                  | 1 | 1             | 1  | 1 | 1      | 1          | K            | *             | *             | ←             | *                                                                                    | *  | *  | 2  | R      | R      | R | R | R |  |

If the eigenvalues are real and have opposite signs we say that the origin is a saddle point.


Ex3. Eign values 
$$P(\lambda) = \det \begin{pmatrix} -1-\lambda & 3\\ 5 & -3-\lambda \end{pmatrix} = 0$$
  
 $P(\lambda) = (1+\lambda)(3+\lambda) - 15 = 0 \iff P(\lambda) = (\lambda+6)(\lambda-2) \stackrel{n}{\Rightarrow} \lambda_{\lambda} = 2 \Rightarrow \lambda_{\lambda}$   
 $\chi^{2} + 4\chi - 3\chi^{2}$   
 $\chi^{2} + 4\chi - 12$   
 $\hat{\gamma}(t) = c_{1}e^{-\delta t} \frac{1}{v_{1}} + c_{2}e^{-2\delta t} \frac{1}{v_{2}}$   
 $\hat{\psi}_{1} = \begin{pmatrix} 1\\ -5\chi^{2} \end{pmatrix} \quad \hat{\psi}_{2} = \begin{pmatrix} 1\\ 1 \end{pmatrix}$ 

**Ex.4** Sketch the solutions of the system  $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ .

| =-2*x+y<br>=-x-2*y<br>trigonometric,<br>functions, but r<br>be entered expl<br>sin x).                                                                                                                                                                         | multip | olication | 1 and |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-------|--|--|--|--|--|--|--|
| ie Display:                                                                                                                                                                                                                                                    |        |           |       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                |        |           |       |  |  |  |  |  |  |  |
| Iaximum x:   5   Maximum y:   5   Number of arrows:   20                                                                                                                                                                                                       |        |           |       |  |  |  |  |  |  |  |
| Sraph Phase Plane                                                                                                                                                                                                                                              |        |           |       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                | ł      | 11        |       |  |  |  |  |  |  |  |
| 4.5                                                                                                                                                                                                                                                            | 4      | 1 1       | ,     |  |  |  |  |  |  |  |
| 4                                                                                                                                                                                                                                                              | Ļ      | 1 1       | ·     |  |  |  |  |  |  |  |
| 3.5                                                                                                                                                                                                                                                            | 1      | 1 1       | 1     |  |  |  |  |  |  |  |
| $3 \rightarrow \rightarrow$                        | 6      | 1 1       | '     |  |  |  |  |  |  |  |
| $\stackrel{2.5}{\rightarrow} \rightarrow \rightarrow$          | 4      | 1 1       | 1     |  |  |  |  |  |  |  |
| $\begin{array}{c}2\\ \rightarrow \rightarrow$      | 4      | 1         | 1     |  |  |  |  |  |  |  |
| $ \begin{array}{c} 1 \\ 1 \end{array} \rightarrow \rightarrow$ | 4      | ~ ~       | -     |  |  |  |  |  |  |  |
| $0.5 \rightarrow \rightarrow$                      | 4      | ~ ~       | -     |  |  |  |  |  |  |  |
| 0 + + + + + + + + + +                                                                                                                                                                                                                                          | ~      | ~ ~       | -     |  |  |  |  |  |  |  |
| 0.5 <i>7 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 </i>                                                                                                                                                                                                              | ~      | ~ ~       | -     |  |  |  |  |  |  |  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                        | *      | * *       | -     |  |  |  |  |  |  |  |
| 1.5 <i>7 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 </i>                                                                                                                                                                                                              | -      | * *       | -     |  |  |  |  |  |  |  |
| 2 7 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                              | -      | ÷ +       | -     |  |  |  |  |  |  |  |
| 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                       | -      | ← +       | -     |  |  |  |  |  |  |  |
| -3 / / / / / / / / / / X X X X X X X                                                                                                                                                                                                                           | *      | * *       | -     |  |  |  |  |  |  |  |
| 3.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                      | *      | * *       | -     |  |  |  |  |  |  |  |

**Sol.** The eigenvalues are -2 + 1i and -2 - 1i.

**Ex.5** Sketch the solutions of the system  $\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 0 & 3\\ -3 & 0 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$ .



**Sol.** The eigenvalues are 3i and -3i.

.

**Summary.** Let A be an invertible  $2 \times 2$  matrix. Classification of the origin for  $\vec{Y}' = A\vec{Y}$ .

- Real eigenvalues, both negative: asymptotically stable node, or sink node.
- Real eigenvalues, both positive: unstable node, or source node.
- Real eigenvalues of opposite sign: saddle point.
- Complex eigenvalues,  $a \pm bi$  with a < 0: asymptotically stable focus.
- Complex eigenvalues,  $a \pm bi$  with a > 0: unstable focus.
- Complex eigenvalues,  $a \pm bi$  with a = 0: center.